Learning Objectives

- After this segment, students will be able to
 - List limitations of traditional statistics for spatial data
 - Describe simple concepts in spatial statistics
 - Spatial auto-correlation
 - Spatial heterogeneity
 - Describe first law of Geography
Limitations of Traditional Statistics

• Classical Statistics
 • Data samples: independent and identically distributed (i.i.d.)
 • Simplifies mathematics underlying statistical methods, e.g., Linear Regression

• Spatial data samples are not independent
 • Spatial Autocorrelation metrics
 • distance-based (e.g., K-function), neighbor-based (e.g., Moran’s I)
 • Spatial Cross-Correlation metrics

• Spatial Heterogeneity
 • Spatial data samples may not be identically distributed!
 • No two places on Earth are exactly alike!
• …
Spatial Statistics: An Overview

• **Point process**
 - Discrete points, e.g., locations of trees, accidents, crimes, ...
 - Complete spatial randomness (CSR): Poisson process in space
 - K-function: test of CSR

• **Geostatistics**
 - Continuous phenomena, e.g., rainfall, snow depth, ...
 - Methods: Variogram measure how similarity decreases with distance
 - Spatial interpolation, e.g., Kriging

• **Lattice-based statistics**
 - Polygonal aggregate data, e.g., census, disease rates, pixels in a raster
 - Spatial Gaussian models, Markov Random Fields, Spatial Autoregressive Model
Spatial Autocorrelation (SA)

- First Law of Geography
 - All things are related, but nearby things are more related than distant things. [Tobler70]
- Spatial autocorrelation
 - Traditional i.i.d. assumption is not valid
 - Measures: K-function, Moran’s I, Variogram, ...

![Independent, Identically Distributed pixel property](image1)

![Vegetation Durability with SA](image2)
Spatial Autocorrelation: K-Function

- **Purpose:** Compare a point dataset with a complete spatial random (CSR) data
- **Input:** A set of points

 \[K(h, data) = \lambda^{-1} E \text{[number of events within distance } h \text{ of an arbitrary event]} \]

 - where \(\lambda \) is intensity of event
- **Interpretation:** Compare \(k(h, data) \) with \(K(h, CSR) \)

 - \(K(h, data) = k(h, CSR) \): Points are CSR
 - means Points are clustered
 - \(< \): means Points are de-clustered

Diagram:

- CSR
- Clustered
- De-clustered

Graph:

- Axes: Distance \(h \) on the x-axis and K-function on the y-axis.
Cross-Correlation

• Cross K-Function Definition

\[K_{ij}(h) = \lambda_j^{-1} E \] [number of type \(j \) event within distance \(h \)
of a randomly chosen type \(i \) event]

• Cross K-function of some pair of spatial feature types
• Example
 • Which pairs are frequently co-located
 • Statistical significance
Recall Pattern Family 4: Co-locations

- Given: A collection of different types of spatial events
- Find: Co-located subsets of event types

Source: Discovering Spatial Co-location Patterns: A General Approach, IEEE Transactions on Knowledge and Data Eng., 16(12), December 2004 (w/ H.Yan, H.Xiong).
Illustration of Cross-Correlation

- Illustration of Cross K-function for Example Data

Cross-K function of pairs of spatial features

Cross-K Function for Example Data
Spatial Heterogeneity

- “Second law of geography” [M. Goodchild, UCGIS 2003]
- Global model might be inconsistent with regional models
 - Spatial Simpson’s Paradox
- May improve the effectiveness of SDM, show support regions of a pattern
Edge Effect

- Cropland on edges may not be classified as outliers
- No concept of spatial edges in classical data mining

Korea Dataset, Courtesy: Architecture Technology Corporation
Research Challenges of Spatial Statistics

- **State-of-the-art of Spatial Statistics**

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Point Process</th>
<th>Lattice</th>
<th>Geostatistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>raster</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Vector</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Line</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Polygon</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

Data Types and Statistical Models

- **Research Needs**
 - Correlating extended features, road, rivers, cropland
 - Spatio-temporal statistics
 - Spatial graphs, e.g., reports with street address