Learning Objectives

• After this segment, students will be able to
 • List 2 algorithms for shortest path queries
 • Compare those two algorithms
Shortest Path Algorithms

- Iterate
 - Expand most promising descent node
 - Dijkstra’s: try closest descendent to self
 - A*: try closest descendent to both destination and self
 - Update current best path to each node, if a better path is found
- Till destination node is expanded
Dijkstra’s vs. A*

Dijkstra’s Algorithm

A* Algorithm

University of Minnesota
Driven to Discover™
Dijkstra’s vs. A*

Dijkstra’s Algorithm

A* Algorithm
Dijkstra’s vs. A*

Dijkstra’s Algorithm

A* Algorithm
Dijkstra’s vs. A*

Dijkstra’s Algorithm

A* Algorithm
Dijkstra’s vs. A*

Wave 4:

Dijkstra’s Algorithm

A* Algorithm
Dijkstra’s vs. A*

Dijkstra’s Algorithm

A* Algorithm

Arrived!
Dijkstra’s vs. A*

Dijkstra’s Algorithm
Dijkstra’s vs. A*

Dijkstra’s Algorithm
Dijkstra’s vs. A*

Arrived!

Wave 8:

Dijkstra’s Algorithm
Shortest Path Algorithms

• Iterate
 • Expand most promising node
 • Dijkstra’s: try closest descendent to self
 • A*: try closest descendent to both destination and self
 • Update current best path to each node, if a better path is found
• Till destination node is expanded

• Correct assuming
 • Sub-path optimality
 • Fixed, positive and additive edge costs
 • A*: underestimate function